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Abstract
In Accelerated life testing (ALT), generally, thog linear function between life and stress is ugsedbtain
the estimates of original parameters of the lifee Tog linear is just a simple re-parameterizatiérithe original
parameter and hard to use in mathematical calounktiFrom statistical point of view, it is prefeiabo work with
the original parameters instead of developing ariees for the parameters of the log-linear linkcfiom. In this
situation, the use of geometric process may beaal gdternative in accelerated life testing to abtdie original
parameter of life distribution directly. In thisger, the maximum likelihood estimates of the partanseof Weibull
distribution with type-Il censored data by assumihat the lifetimes under increasing stress leirelaccelerated
life testing form a geometric process are obtainedaddition, by using Fisher information matrixetasymptotic
confidence intervals are also constructed for theumeters. Lastly a Simulation study is performeaheck the
statistical properties of estimates and the confiddntervals.
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Introduction
Nowadays, there is a big competition among

manufacturing industries to provide quality produtd
their customers and hence the customer expectadiens
also very high which makes the products in receat e
very reliable and dependable. As in life testing
experiments the failure time data is used to obth&
product life characteristics under normal operating
conditions, therefore, such life data has becoms ve
difficult to obtain as a result of the great relidp of
today’s products and hence under normal operating
conditions, as products usually last long, the
corresponding life-tests become very time consuming
and expensive. In these cases, an acceleratedesfe
(ALT) which is a quick way to obtain information it
the life distribution of a material, component apguct
can be applied to reduce the experimental timethad
cost incurred in the experiment. In ALT items are
subjected to conditions that are more severe than t
normal ones, which yields shorter life but, hoplgfuio
not change the failure mechanisms. Failure infoionat
collected under this severe test stresses can be
extrapolated to obtain an estimate of lifetime unde
normal operating condition based on some life-stres
relationship.

ALTs, generally deal with three types of stress
loadings i.e. constant stress, step stress andrlne
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increasing stress. The constant stress loadingtiimex
independent test setting and others are the time-
dependent test setting. The constant stress lodutsg
several advantages over time-dependent test sgtfiog
example, most of the products in real life are afmst at

a constant stress. Therefore, a constant streds tes
describes the actual use of the product. Also,sit i
comparatively easy to run and to quantify a coristan
stress test. Failure data obtained from ALT can be
divided into two categories: complete (all failutata are
available) or censored (some of failure data aesimg).

For more details about ALTs one can consult
Bagdonavicius and Nikulin [1], Meeker and Escol®jr [
Nelson [3, 4], Mann and Singpurwalla [5].

Constant stress ALT with different types of data
and test planning has been studied by many authkors.
example, Yang [6] proposed an optimal design cfvel
constant-stress ALT plans considering different
censoring times. Pan et al. [7] proposed a bivariat
constant stress accelerated degradation test mmdel
assuming that the copula parameter is a functiothef
stress level that can be described by a logistictian.
Chen et al. [8] discuss the optimal design of midti
stress constant accelerated life test plan on actangle
test region. Watkins and John [9] considers constan
stress accelerated life tests based on Weibull
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distributions with constant shape and a log-linkak
between scale and the stress factor which is teeh
by a Type-Il censoring regime at one of the sttegsls.
Fan and Yu [10] discuss the reliability analysistioé
constant stress accelerated life tests when a gaeanm
the generalized gamma lifetime distribution is éineén
the stress level. Ding et al. [11] dealt with Wéibu
distribution to obtain accelerated life test samgplplans
under type | progressive interval censoring withd@m
removals. Ahmad et al. [12], Islam and Ahmad [13],
Ahmad and Islam [14], Ahmad, et al. [15] and Ahmad
[16] discuss the optimal constant stress accelérkfie
test designs under periodic inspection and Type-I
censoring.

Geometric process (GP) is first used by Lam [17] in
the study of repair replacement problem. Since then
large amount of studies in maintenance problems and
system reliability have been shown that a GP madel
good and simple model for analysis of data witlngle
trend or multiple trends, for example, Lam and Zhan
[18], Lam [19] and Zhang [20]. So far, there ardyon
four studies in the analysis of accelerated lifgt that
utilize the GP. Huang [21] introduced the GP mddel
the analysis of constant stress ALT with complate a
censored exponential samples. Kamal et al. [22]
extended the GP model for the analysis of complete
Weibull failure data in constant stress ALT. Zhduak
[23] implement the GP in ALT based on the prognessi
Type-l hybrid censored Rayleigh failure data. More
recently Kamal et al. [24] used the geometric pssder
the analysis of constant stress accelerated fntg for
Pareto Distribution with complete data.

In this paper, the geometric process with maximum
likelihood estimation technique is used to obtaie t
estimates of the parameters of Weibull distribution
constant stress ALT with and type-Il censoring secbe
The confidence intervals for parameters are alsaiéd
by using the asymptotic properties of normal dsttion.

In the last, the statistical properties of estimatad
confidence intervals are examined through a sinuulat
study.

TheModel and Test Procedure
The Geometric Process (GP)

A GP is a stochastic procdss,,n=12,...} such

that {A”_an,n=ZL2,...} forms a renewal process

where A >0 is real valued and called the ratio of the
GP. It is easy to show that {fX,,n=12,...} is a GP

and the probability density function o, is f (x) with

mean 4 and varianceg? then the probability density
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function of X, will be A"*f(A"'x) with mean

11 A" and varianceg? / A2,

It is clear to see that a GP is stochastically
increasing if 0<A <1 and stochastically decreasing
if A >1. Therefore, GP is a natural approach to analyse
the data from a series of events with trend. Foremo
details about GP and its properties see Braun 25l
The Weibull Distribution

The probability density function, the cumulative
distribution function, the survival function ancetfailure
rate (or hazard rate) of a two parameter Weibull
distribution with scale parameterr >0 and shape
parameterS > 0, are given respectively by

f(x|a,ﬁ)=a£ﬁxﬁ'1 exp{— (gjﬁ} X0
1)

F (a, p)=1_exp{-(§f},
s<x):ex%_(§j"},

5-1
h(x) =§(§j

It is easy to verify that failure rate (or hazaede)
decreases <1 (or increases jf>1) and S=1

indicates that the failure rate is constant.

Assumptionsand test procedure
i. Suppose that an accelerated life test wéh
increasing stress levels in which a random
sample of n identical items is placed under
each stress level and start to operate at the

same time. LetXy,i=12,..n k=12...s

denote observed failure time of" test item

underk™ stress level. Whenever an item fails,
it will be removed from the test and the test is
continue until a prespecified number of

failuresr at each stress level (type-Il
censoring). Here total numbers of observed
failure are rand can be written

ii. The product life follows Weibull distribution
given by (1) at any stress.
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iii. The scale parameter is a log-linear function of
stress, that idog(a, ) =a +bS, , wherea and
b are unknown parameters depending on the
nature of the product and the test method.

iv. Let random variableX,, X;, X,,...,Xq,
denote the lifetimes under each stress level,
where X, denotes item’s lifetime under the
design stress at which items will operate
ordinarily and sequen@(k,k:LZ,...,s}
forms a geometric process with ratic> 0.

Assumptions (i-iii) are very usually discussed in
literature of ALTs but assumption (iv) which willeb
used in this study may be better than the usual one
without increasing the complexity of calculatiorihe
next theorem discusses how the assumption of geiemet

process (assumption iv) is satisfied when thera leg
linear relationship between a life and stress (agsion

iii).
Theorem 2.1: If the stress level in a constant stress ALT

isincreasing with a constant difference then the lifetimes
under each stress level forms a GP that is, If S ,; — S,

is constant fork =1,2,...,s-1, then
{Xk,k:O,lZ,...,s} forms a GP. Or log linear

relationship and GP model are equivalent when the
stressincreases arithmetically in constant stress ALT.

Proof: From assumption (iii), it can easily be shown that

|og(ﬂj =b(S., ~S) =bAS (2)
ay
Now eq. (2) can be rewritten as

a 1
Skl —ghtS = = (Assumed) (3)
a, A
This shows that stress levels increases

arithmetically with a constant differenfeS.
Therefore, It is clear from (3) that
a :la =i0’ = :i
k= Tk T Tk T Tk
The PDF of the product lifetime under the
k™ stress level is

a

L, (@,6,1) =
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B
ka (x) :% xPLexp - (ij
a

2] et 2]
a a

This implies that
Fx, (0= AF5 (%) (4)

Now, the definition of GP and (4) have the
evidence that, if density function oK, is fy_(X), then

the probability density function ofX, will be given

by/1k f()IkX), k=012---,S. Therefore, it is clear

that lifetimes under a sequence of arithmetically
increasing stress levels form a geometric procefis w

ratioA .

Maximum Likelihood Estimation

Here the maximum likelihood method of estimation
in which the estimates of parameters are thoseesalu
which maximize the sampling distribution of data is
used. Also ML method is very robust and gives the
estimates of parameter with good statistical priger
However, ML estimation method is very simple foreon
parameter distributions but its implementation ibTAs
mathematically more intense and, generally, esémat
parameters do not exist in closed form, therefore,
numerical techniques such as Newton Method, Some
computer programs are used to compute them.

Let the test at each stress level is terminateet aft

having r failures. Assume thai,,(<n) failures at

the k™ stress level are observed before the test is
suspended angdn —r) units are still surviving at each

stress level.

Now the likelihood function for constant stress
ALT with Type Il censored Weibull failure data ugin
GP at one of the stress level is given by

B B
X, A¥x
_{ k(n)] ox _{ k(r)}
a a
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Therefore, now the likelihood function of obsendata for totalS stress levels is

L, (@,6,4) =L, xL,...xLg

s k g ‘ 8
- n' _Ak r - - AKX, i Ax
i I<_| (n- r)l[ a J 2 |_| X,’f(i)lex _{%J ex —[%} 5)
=1 : '

The log-likelihood function corresponding (5) talkke form

I
Iog( n j+kr,8|og)l—r,8|oga+rlog,8

s (n=n)!
| =logL, (@.,6,4)=
k=1

r Ak B r
+(B-1D2" logxg, ‘[7} ( Xy +(n—r)(xk(,))/’J
i=1 i=1

MLEs of @, 5 and A are obtained by solving the following normal edpas

s B+ r,
ﬂzz [—%t&lkﬁ(iJ (Z X +(n—r)(Xk(r))ﬂj]=O

a = a
S k B r
5 [0 928 v

krlogA —rloga +% +Y log(Xy )
i=1

s k ﬁr k
s—lzz _K%J Z (Xk(i))ﬂ{log(xk(i))+|Og(%}} =0

i=1

(2 s A"
_ (n r)[;} (X«(ry) {lOQ(Xk(r))HOg[?j}_

The equations given above are nonlinear; therefoieyery difficult to obtain a closed form saln. So, Newton-
Raphson method is used to solve these equationdtaitaously to obtaim, £ and/ .

Fisher Information Matrix
The Fisher’s information matrix composed of theatag@ second partial derivatives of log likelihofhction can be

written as
B A
da? 0a0A  0adf
F=| 02l A
0Ada 0A° 0108
_0i o a4
ofoa 004 0/5°

Where the elements of the Fisher Information matrexobtained as
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Asymptotic Confidence Intervals
According to large sample theory, the maximum Ilk@bd estimators under some appropriate regulaghditions
are consistent and normally distributed. Since Mtingates of parameters are not in closed formetbes, it is impossible

to obtain the exact confidence intervals, so asgtigpiconfidence intervals based on the asymptdtaoty of normal

distribution instead of exact confidence intenas obtained here.
Now, the variance covariance matrix of parametarshe written as

ISSN: 2277-9655
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ACOV(41) ACOV(43)

B A
| a¥ 92| o4 | < -
>="00a o omp| | coviia) Avar()
a2l a2l 2l ACov(Ba) ACov(BA)
o@a @A op?

ACov(/i ,3)
AVar ()

The 10001 - y)% asymptotic confidence interval far, 5 and A are then given respectively by

{ﬁ +Z 1/AVar(6r)} , {,@’ £z, \ AVar (,[Ai’)}and {j £z,  AVar (/i)}

2.538| 0.0202 0.0580| 2.2504 2.89
Simulation Study 0.814| 0.0132 0.1442 | 0.5136| 1.1064
The performance of the estimates can be | 150| 1.506| 0.0078 0.0594 | 1.2841| 1.7399
evaluated through some measures of accuracy which a 2.519| 0.0169 0.0522 | 2.1756| 2.8464
the mean squared error (MSE), relative absoluts bia 0.802| 0.0114 0.1338 | 0.7626| 1.0675
(RAB) and the 95% asymptotic confidence intervals f 200 | 1.514| 0.0092 0.0653 | 1.2725| 1.7675
different sample sizes and stress levels. Now fiis t 2.504| 0.0157 0.5010 | 2.1787| 2.8253
purpose following simulation study is conducted. 0.791| 0.0102 0.1278 | 0.5234| 1.0446
To perform the simulation study, first a random 250 | 1.520| 0.0163 0.0881 | 1.4919| 1.8634
sample X, k=12...5 i=12...r is generated from 2.488| 0.0121 0.0440 | 2.1962| 2.7818
. o . . Table 2: Simulation Study Results
Weibull distribution which is censored rat 25 35. witha = 080, B = 250, A = 150, S = dand 1 =35
The values of the parameters and number of stegets! ~ — — 5
are chosen to ber = 080, = 250, A = 150 and a MSE(OA') RAB (a:) Cogfsidg)nce
s=4. For different sample sizés= 5010Q...250 n A | MSE(A) | RAB(A) Interval
EE?:II_VILE;UI\Q:SL)E? R9A5I03/s and IotW(te_r andf}:jpper Qltlei]mits [3’ MSE(,[A?) RAB (’[3) LCL UCL
an or 6 asymptotic confidence intdrva
of parameters based on 600 simulations are obtdiged 0.868) 0.0139 0.1877 | 0.5888| 1.1972
the present model and summarized in Table 1 and 2. 50 | 1.5741 0.0042 0.0761 | 1.4268| 1.7612
2.572| 0.0161 0.0615 | 2.2596| 2.9144
Table 1: Simulation Study Results 0.858| 0.0125 0.1786 | 0.6005| 1.1775
witha = 080, B= 250, A = 150, s=4and I =25 100 | 1.554| 0.0067 0.0709 | 1.3568| 1.7792
- - _ 5 2.554| 0.0183 0.0567 | 2.1929| 2.8910
G | MSE(4) | RAB(a) Cogg d(/:nce 0.842| 0.0258 | 0.2211 | 0.4596| 1.2884
v A wselh [meech | Cenal® | |10 Is) oo | oo |12 1o
B | MSE(B) |RAB(B) | LCL | UCL 0.826| 0.0168 | 0.1669 | 0.4976| 1.1664
0.856| 0.0182 0.1782 | 0.4979] 1.1941 200 | 1.518| 0.0051 0.0489 | 1.2988| 1.6672
50 | 1.458| 0.0039 0.0582 | 1.2779| 1.6001 2.510| 0.0192 0.0564 | 2.1165| 2.8315
2.545| 0.0283 0.0687 | 2.0999| 2.9680 0.808| 0.0087 0.0050 | 0.5634| 1.0446
0.832| 0.0179 0.1742 | 0.4938] 1.1842 250 | 1.498| 0.0121 0.0053 | 1.2082| 1.7758
1001 1 462| 00056 | 0.0615 | 1.3539| 1.6391 2.496| 0.0228 | 0.0072 | 2.0924| 2.8716
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Discussion and Conclusions

In this paper the problem of constant stress ALT
with type-Il censored Weibull failure data using G&s
been considered. The MLEs, MSEs, RABs the 95%
asymptotic confidence intervals of the model patanse
were obtained.

From the results in Table 1 and 2, it is easynd fi
that estimates of the parameter perform well. Fordf

a,fB andA, the MSEs and RABs ofa,f and

A decreases afl increases. This indicates that the ML
estimates provide asymptotically normally distrist
and consistent estimator for the parameters. Fofited
sample sizes, as number of failures gets larger the
MSEs and RABs of the estimators decrease. Thisrig v
usual because more failures increase the efficientlye
estimators.

From above discussion and results it is concluded
that the present model work well under type-Il czad
data for Weibull distribution and would be a goduice
to be considered in the field of ALTs in future.rRbe
future perspective of further research in thisctiom one
can choose some other lifetime distribution witfiedent
types of censoring schemes.
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